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constant; 
mixing length constant; 
mixing length ; 
= (r,‘r,) constant; 
radius ; 
fluid velocity in direction of mean flow; 
= J(rw:p) friction velocity; 

U+* , = u/u* non-dimensional velocity ; 

NOMENCLATURE 

y, distance from a wall; 
y+, y(u*lv) non-dimensional wall distance. 

Greek symbols 
a. = (r2/r ,) radius ratio ; 
E. eddy diffusivity ; 
Y, kinematic viscosity ; 
P. mass density ; 
T. shear stress. 

Subscripts 
W. 

1, 
2, 
m. 

wall ; 
inner region or inner wall ; 
outer region or outer wall ; 
point of zero shear stress. 

INTRODUCTION 

A MOST interesting feature of the study of turbulent annular 
flow velocity profiles, is the complete failure of the con- 
ventional “Universal Velocity Profile” to correlate the 
results in the inner wall region. There is a wealth of reliable 
experimental data which lends support to the accuracy of 
the familiar “Law of the Wall” in the outer wall region. but 
to date there is no completely satisfactory counterpart for the 
inner wall region. 

Recently Levy [l] derived expressions for the velocity 
profiles in turbulent concentric annular flow. In his analysis 
Levy assumed that Reichardt’s [2] expression for eddy 
diffusivity in pipe flow was applicable in a modified form. to 

annular flow; the true parabolic shear stress distribution in 
annular flow was also used by Levy. Following an analysis 
similar to that used for the derivation of the turbulent flow 
laws for pipes and parallel plates. Levy obtained the 
following cumbersome expression for the non-dimensional 
velocity profile : 

uf = 

t(1 - t) (1 - 3t) 

+ ’ k(1 + t) [t’ + f-( 1 + t)‘] 
ln L!; 

( > 

6 In [b(l - t) + t] 
+ k(l’ [(l - t)2/36 - l] [(Cl - b)’ + 21 

+ J2,(1 - t)ttan-‘(J2) - tan_tb.(J2) 

k (l+t) tZ + f(1 - ty 

+ 14.84 - i In 42 (1) 

where : 
b = (r - r,Mr, - r,A 
t = (r&J. 

This expression is valid for both the inner and outer wall 
regions-the appropriate values being given to k. 

Bearing in mind that for the prediction of heat-transfer 
results in annuli. we utilize the velocity profiles for both the 
inner and the outer regions, it is obvious that the expression 
derived by Levy would make the computation unnecessarily 
complex and involved. 

This note presents a method of analysis which is basically 
the same as that of Levy’s, but which leads to a very much 
simpler and more convenient result which is found to agree 
with experimental results as well as, if not better than, the 
cumbersome expression of Levy. 
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ANALYSIS 

Levy’s results can be greatly simplified if we assume, tirstly 

that the shear stress is constant across the flow section and 

secondly. that the position of the radius of zero shear is 

given by the expression suggested by Leung er al. [3] for the 

radius of maximum velocity. As a result of some unpublished 

experiments by the author, it is confidently felt that the 

correlation by Leung et al. for the radius of maximum velocity 

represents the position of the radius of zero shear for fully 

turbulent flow even for large radius ratios. The more recent 

results of Brighton [4] and Lee [5]. which encompass a 

wider range of radius ratios (up to Lee’s a = 80.7) than 

originally given by Leung et al.. lend weight to Leung’s 

suggested correlation. 

Applying Reichardt’s expression for the eddy diffusivity 

in pipe flow. to fully developed turbulent flow in a concentric 

annulus. we have for the outer region : 

I 

With a corresponding expression for the inner region. 

Because the eddy diffusivity varies continuously across the 

section, then we can equate &t and sq at r = rm. 
Thus. 

k, = f2=/;:j. 

0.6 

(3) 

But from Leung et al. we have 

Carrying out a force balance on an annular element of 

fluid we fmd that 

Twl r2 b-i - rf) o=-x Tw, rl (4 - ri) 
(5) 

Substituting (4) and (5) into (3) gives 

k, = k,{;~,/($&!)}. (6) 

Thus knowing a and k, we can find k,. A value of @4 for 

k, correlates the outer region satisfactorily for all values of 

a-as would be expected because the structure of the flow 

in this region is very similar to that occurring in pipe flow. 

Hence the “modified” Universal Velocity Profile for the 

inner region takes the form 

n; =; .Iny: + i?,. 
1 

B, is found by arranging for the curve to pass through 

u+ = 13, yf = 22; this point is found to be the most suitable 

for the joining of the inner and outer regions based upon 

experimental results. 

DISCUSSION 

Figure I shows the variation of the modified mixing length 

FIG. 1. Modified mixing length constant 
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Figure shows the variation of the modified mixing length 
constant k,, as calculated from equation (6) for a range of 
radius ratios from 1 to 100. 

A summary of results in the form of a modilieh Universal 
Velocity Prolile for the inner region is shown in Fig. 2 for 
values of G( of 100, 30, 16,8 and 1.5; together with the usual 
form of the velocity profile which is common to the outer 
region of all concentric annuli. 

In Fig. 3 the predicted profiles are compared with the 

experimental results of Brighton [4] for a radius ratio of 
a = 16. together with the curve predicted by Levy. There is 
seen to be a noticeable improvement with the present 
correlation. 

From his work on pipe flow, Deissler [6] concluded that 
the effect of variable shear stress on velocity distribution 
was only very slight, and that the u+ - yc relationship 
based upon constant shearing stress across the pipe. pre- 
dicted the velocity profiles to within the experimental error. 
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FIG. 2. Universal velocity profiles. 
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FIG. 3. Universal velocity profiles. 
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It would appear from the foregoing that the same is also true 
for annuli. 

velocity distribution in smooth pipes. Z. Anger. Mak 
Mech. 31, 308 (1951). 

From this work it is apparent that the mixing length 3. 
constant is not in fact a universal constant for all surfaces. 
as postulated by some workers, but is in fact a function of 
the radius or curvature ratio of the annulus to which it 
applies. 4. 

The method contained herein appears to give a simple. 
but reliable, prediction of the form of the u+ - yi relation- 
ship for the inner region of annuli. 

5. 
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NOMENCLATURE 

= 2s, equivalent diameter of the channel; 
function ; 
convective heat-transfer coefficient; 
Nusselt number (based on equivalent diameter); 
Reynolds number (based on equivalent diameter) ; 
width of the channel ; 
temperature ; 
velocity; 
heat flux : 
distance in the direction of flow: 
distance from a wall 

Greek symbols 
a, dimensionless temperature as defined in equations 

(11) and (12); 
)‘. = (q;!q,), ratio of the heat fluxes at the walls of the 

channel ; 
6. total conductivity of heat. 

* Department of Mechanical Engineering, The University 
of Liverpool. 

t Engineering Laboratory, University of Cambridge. 

Subscripts 
PS. value in symmetrical heating case; 
P, Q. refer to the walls of the channel: 
W, wall value ; 
B. bulk value. 

Superscripts 
! I, 11, 1, . refer to the thermal boundary conditions des- 

cribed in Fig. 1. 

INTRODUCTION 

A NUMBER of analytical studies [l-5] have been made of 
heat-transfer coefficients in flow between parallel plates with 
unequal heat fluxes at the two plates. An experiment has 
been reported by Barrow [4], but the results showed con- 
siderable scatter and its was difficult to confirm that the 
analysis given by Barrow in the same paper adequately 
described the variation in the heat-transfer coefficient (at 
one wall) with the ratio of the fluxes at the two walls, y. 

In most of the previous work, an analytical solution is 
first obtained for flow between the plates with heat transfer 
at one wall and the other wall insulated. Assumptions for the 
variations of the velocity and eddy diffusivity of heat across 
the channel are made. The case of asymmetric heat transfer 


